Brain-Computer Interface Implant for Severe Communication Disability
Study Purpose:
Locked-In Syndrome (LIS) is a devastating condition in which a person has lost the ability to communicate due to motor impairment, while being mentally intact. For people affected by this severe communication impairment, Brain-Computer Interfaces (BCI) may be the only solution that allows these people to start a conversation, ask questions, or request assistance (i.e. self-initiated communication). To-date, spelling was accomplished at a rate of 2-3 letters per minute with a predecessor device (the Medtronic Activa PC+S). To improve BCI performance, the current protocol will use the Medtronic Summit System, which offers a rechargeable battery and improved signal quality relative to Activa PC+S. Using signals from the motor hand/arm and/or motor mouth/face area, the investigators will investigate different avenues to improve the speed of communication using the Summit System. The primary objective is to evaluate the safety of the Summit System when used to chronically record subdural electrocorticographic (ECoG) signals in a BCI for use by patients with LIS in patients' homes. The secondary objective will be to evaluate the efficacy of the Summit System as a long-term source of ECoG signals for a BCI capable of allowing participants to control alternative and augmentative communication software in patients' homes.
Disease:
Amyotrophic Lateral Sclerosis (ALS), Familial ALS, Sporadic ALSStudy Type:
Interventional TrialStudy Category:
DeviceStudy Status:
EnrollingPhase:
Not ApplicableStudy Chair(s)/Principal Investigator(s):
Nathan Crone, MD, Professor of Neurology, Johns Hopkins University
Clinicaltrials.gov ID (11 digit #):
NCT04576650Neals Affiliated?
NoCoordinating Center Contact Information
Johns Hopkins HospitalNathan Crone, MD / .(JavaScript must be enabled to view this email address) / 410-955-6772
.(JavaScript must be enabled to view this email address) Baltimore, Maryland 21287 United States
Full Study Summary:
Locked-In Syndrome (LIS) is a devastating condition in which a person has lost the ability to communicate due to motor impairment, while being mentally intact. As a result, interaction with the environment is severely limited, and often can only be achieved in concert with a caregiver, who points at letters on a board one by one until the affected person blinks his or her eyes. For people affected by this severe communication impairment, Brain-Computer Interfaces (BCI) may be the only solution that allows these people to start a conversation, ask questions, or request assistance (i.e. self-initiated communication). A current study in the investigators' collaborator's lab at the University Medical Center Utrecht (UMCU, Utrecht, The Netherlands) aims to achieve communication in people with LIS, through a fully implantable BCI system, the Medtronic Inc. Activa PC+S. This is a research version of a deep brain stimulation device (Activa PC; FDA approved for treating Parkinson's disease and other disorders) that has been modified to allow electrophysiological recordings (+S for sensing). In the Utrecht Neuroprosthesis (UNP) study to date, spelling was accomplished at a rate of 2-3 letters per minute. To improve BCI performance, the current protocol will use the Medtronic Summit RC+S device (henceforth referred to as the Summit System), which offers a rechargeable battery and improved signal quality relative to Activa PC+S. Using signals from the motor hand/arm and/or motor mouth/face area, the investigators will investigate different avenues to improve the speed of communication. To achieve this, the investigators will use the Summit System under an investigational device exemption (IDE) and a Collaborative Research Agreement between Johns Hopkins University (JHU), UMCU, and Medtronic. The study has two main objectives. The primary objective is to evaluate the safety of the Summit System when used to chronically record subdural electrocorticographic (ECoG) signals in a BCI for use by patients with LIS in patients' homes. The secondary objective will be to evaluate the efficacy of the Summit System as a long-term source of ECoG signals for a BCI capable of allowing participants to control alternative and augmentative communication software in patients' homes.